$\qquad$
Precalculus
Introduction
Purpose: In this problem set, you will begin to explore exponential functions through real-world applications.

1. Suppose you need to grow bacteria in a petri dish to test out a new antibacterial medication. Which of the following tables models the population of the bacteria over time?

| Time (hours) | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Population (million) | 10 | 20 | 40 | 80 | 160 |


| Time (hours) | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Population (million) | 10 | 20 | 30 | 40 | 50 |

2. Suppose you are tracking the amount of radioactivity material in the water after a nuclear power plant spill. Which of the following tables models the amount of radioactive material over time?

| Time (years) | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Amount (mg/L) | 10 | 9 | 8 | 7 | 6 |$|$| Time (years) | 0 |
| :---: | :---: |
| Amount (mg/L) | 10 |

3. Return back to the previous tables that you've selected. Can you write a mathematical formula for the data?

Definition: An exponential function is a function which grows or decays at a rate proportional to its current value. The formula looks like

$$
f(x)=
$$

We have a lot of questions about these functions and questions that these functions will help us answer.

- What are the domain and range of an exponential function?
- What does the graph of an exponential function look like?
- What is the inverse of an exponential function?
- How to make $\$ 1,000,000$ dollars by the time you retire.

Some of these questions are easier to answer than others.
3. What is the domain of the exponential function $f(x)=b^{x}$ (where $b>0$ )?
4. What is the range of the exponential function $f(x)=b^{x}$ (where $\left.b>0\right)$ ?
5. Let's compare exponential functions to linear functions.
(a) On the same set of axes, graph $f(x)=2^{x}$ and $g(x)=2 x$. Sketch the graph below and compare and contrast the graphs.
(b) Do the same but with $g(x)=2 x^{2}$. How does this quadratic compare with the exponential function?
(c) Do you think there's a polynomial that will grow faster than $f(x)=2^{x}$ ? Graph them together (and sketch them below) and zoom out really far. What do you notice?

## (d) FACT:

## Let's talk MONEY!

6. Suppose you invest $\$ 10$ in an account which grows at $5 \%$ annually. How much money will you have after 3 years?
7. Suppose you invest $\$ 0.93$ in an account which grows at $2.25 \%$ annually. How much money will you have after 1,000 years?
8. After you graduate and take your first job, suppose you buy a car for $\$ 32,000$. If this car depreciates in value at $10 \%$ per year, what is the value of the car after 5 years?

Suppose the annual interest rate a savings account gives is compounded monthly instead of annually.
Then the interest rate will be different than percentage return on your investment at the end of the year.

Definition: The actual percent return on your investment at the end of the year is called annual percentage yield or APY.

Given an annual percentage rate of $r \%$ compounded $k$ times per year, the annual percentage yield is

$$
\mathrm{APY}=\left(1+\frac{r}{k}\right)^{k}-1
$$

Interest could be compounded yearly, monthly, daily, hourly, minute-ly, or second-ly! If it's a unit of time, we can compound interest that often. What about continuously?

As $k \rightarrow \infty,\left(1+\frac{r}{k}\right)^{k} \rightarrow$ $\qquad$

This number is so common in math, economics, and elsewhere, we give it a name ... "e".

If we invest $\$ P$ at $r \%$ APR which is compounded continuously for $t$ years, we will end up with
9. How much money will you have in your account if you invest $\$ 100$ at $2 \%$ APR for 5 years, compounded continuously?

## Summary:

- General Exponential Function:

$$
y=a b^{x}+k, \text { for } b>0
$$

- Appreciation/Depreciation of $r \%$ per unit time $t$ :

$$
A=P(1+r)^{t}
$$

- Appreciation/Depreciation of $r \%$ per unit time compounded continuously:

$$
A=P e^{r t}
$$

For home: How much money will you have to invest at $10 \%$ APR to end up with $\$ 1,000,000$ at the end of 40 years, compounded annually, monthly, daily, hourly, and continuously?

